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LElTER TO THE EDITOR 

Ballistic deposition with non-uniform deposition densities: 
singular density distributions 

Paul Meakin 
Central Research and Development Department, E I Du Pont de Nemours and Company, 
Wilmington, DE 19898, USA 

Received 5 October 1988 

Abstract. Ballistic aggregation and deposition with non-uniform deposition probability 
densities have been investigated. For the case of a singular power law, the density 
distributions can be described by the strength parameter a. Simple theoretical arguments 
and computer simulations indicate that h - s"11 and w - sui  where h is the cluster height, 
w is the cluster width and s is the cluster size. The exponents vI1 and vl are given by 
vll = ( d  - a ) / d  and vl = l / d  where d is the dimensionality of the space in which ballistic 
aggregations are occurring. 

Simple models for ballistic deposition processes in which particles are brought to a 
growing surface or aggregate via linear trajectories have been explored for more than 
25 years (Vold 1959a, b). During the 1970s considerable interest developed in ballistic 
deposition models motivated by the need to obtain a better understanding of thin film 
deposition processes used to manufacture devices with unique optical, electronic, 
magnetic, tribological and mechanical properties (see for example Henderson et a1 
1974, Kim et al 1977, Dirks and Leamy 1977, Leamy and Dirks 1977, Leamy et a1 
1980). In recent years there has been a resurgence of interest in ballistic deposition 
and aggregation models, stimulated by the introduction of the diffusion-limited aggrega- 
tion model by Witten and Sander (1981) which led to the investigation of a wide variety 
of non-equilibrium growth and aggregation models. 

In all of the ballistic aggregation and deposition models investigated so far a random 
uniformly distributed flux of particles was assumed. These models lead to the formation 
of structures which are uniform on all but short length scales with self-affine fractal 
surfaces (see Family and Vicsek 1985, Meakin et a1 1986, Kardar et a1 1986, for 
example). Essentially uniform deposition is found in many important processes such 
as sedimentation and vapour deposition. However, it is also possible for particles to 
be transported by non-linear dynamic processes, chaotic flows, etc (Ottino er a1 1988) 
which will, in general, lead to very non-uniform deposition density distributions. Here 
simple random deposition models are considered in which particles are deposited from 
one direction onto a growing cluster or deposit. In these models the deposition 
probability that a particle will follow a ballistic trajectory at a distance in the range 
X to X + 6X from a parallel vector passing through the origin is given by 

P ( X )  - x-"sx. (1) 
Consequently, the probability that a trajectory will pass within a distance 1 from the 
origin is given by 

P( 1 )  - 1" (2) 
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where the exponent CY is given by 

CY = d,  - CY' (3) 
where d,  = d - 1 and d is the dimensionality of the space in which the ballistic deposition 
or aggregation process is occurring (in a deposition process d, is the dimensionality 
of the substrate). 

Figure 1 shows results from small scale two-dimensional (d  = 2, d,  = 1) off-lattice 
simulations in which particles of unit diameter were deposited one at a time at normal 
incidence to a linear substrate with a length (L) of 512 particle diameters. Apart from 
the fact that the deposition density at a distance X from the origin (at the centre of 
the substrate) is given by equation (2) the simulations are identical to off-lattice ballistic 
deposition simulations with a uniformly distributed random flux (Meakin et al 1986, 
Meakin 1987). Periodic boundary conditions were used in the lateral direction. It is 

. * *  
512 diameters 512 diameters 

a :0.25 
s = 2000 

strength a (a = 0.75,0.5 and 0.25 in ( a ) ,  ( b )  and ( c )  
512 diameters respectively). 

1 
1 

Figure 1. Two-dimensional off-lattice simulations of 
ballistic deposition onto a line with singularities of 
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apparent from figure 1 that the structure of the deposit is very similar to that found 
for a uniform particle deposition density except for positions near to the singularity 
in the deposition density at a position of L/2. 

Since the structure of the 'tree' at L/2 does not depend on the more uniform part 
of the deposit at longer distances, simulations were also carried out in which a cluster 
was grown starting with a single 'particle' at the position of the singularity (figure 2). 
For the case a = 1 (a'= 0) this model corresponds to the 'rain' model (Bensimon et 
a1 1984). For other values of a and a' the overall shape and internal structure of the 
clusters is quite different (figures 2( b - d ) ) .  To obtain a more quantitative characterisa- 
tion of these clusters the dependence of the maximum height (h),  the maximum width 
(w) and the height at which the cluster width is greatest ( h 2  = h, + h, ,  see figure 3)  on 
the cluster size s was measured. Clusters of size s = 106-107 were generated and results 
obtained from a number of simulations (typically several hundreds for s = lo6 or several 
tens for s = lo7). For example, figure 4 shows the dependence of the lengths (1) h, h2 
and w on the cluster size (number of particles) s. The results shown in figure 4 were 
obtained from 73 simulations in which clusters of size s = lo7 were grown with a = 0.4 
(a'=O.6). In all cases the dependence of h and w on s can be represented very well 
by 

h - s " 1 1  (4) 

w - S Y L  ( 5 )  

where vIl = (2- a ) / 2  and vI = 0.5. The values obtained from the exponents vll and vI 
are given in table 1. The statistical uncertainties are quite small ( S  10.0001). The 
dependence of cluster height at the maximum width on the cluster size can also be 
expressed in terms of a power law 

h2 - S" ( 6 )  

and the values obtained for the effective exponent 7 are given in table 1 .  The statistical 
uncertainties for 7 are much larger ( S  *0.005). 

The mean rates of growth of the cluster width (w) with increasing cluster size (s )  
are given by the probability that a particle will be deposited along a trajectory with 
an impact parameter of w/2 to w/2 + do where do is the particle diameter and w is the 
maximum difference for the x coordinates for any pair of particles in the deposit. 
From this it follows that 

dw/ds-(w"-'d,)/(w") (7) 

and that w - s"'. Similarly, the cluster height will grow if the deposited particle has 
an x coordinate close to that of the tip of the cluster near x = 0 and an estimate of 
this probability is given by 

or 

which implies that 
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Figure 2. Clusters generated by ballistic aggregation with deposition density distributions 
given by a = 1,0.75,0.5 and 0.25 respectively in (a), ( b ) ,  (c) and ( d ) .  ( a )  (a = 1 )  shows 
a cluster generated using a uniform deposition density distribution. 
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Figure 3. This figure shows the quantities used to partially characterise the shapes of the 
clusters. 

01 I I I 1 I I I I I I I I I 
5 I 9 11 13 15 17 

In ( S I  

Figure 4. Dependence of the characteristic lengths (I)  h, h, and w on the cluster sizes 
obtained from simulations carried out with a singularity strength parameter a of 0.4. The 
broken lines are straight lines which illustrate the linear dependence of In(/) on In(s) for 
all three lengths. 
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Table 1. Values obtained for the exponents vil , v L  and 7 from two-dimensional simulations. 
cy is the singularity strength parameter and s is the maximum cluster size (number of 
particles). 

S VI 7) VI1 cy 

1.0 1 o6 0.504 0.501 0.510 
0.75 1 oh 0.626 0.501 0.501 
0.6 10’ 0.701 0.500 0.502 
0.5 io7 0.750 0.500 0.476 
0.4 1 o7 0.800 0.500 0.549 
0.25 1 o6 0.875 0.502 0.629 
0.125 1 Oh 0.913 0.501 0.651 
0.10 1 o7 0.950 0.501 0.714 

Similarly, for the case of deposition onto a d,-dimensional substrate we expect to find 
that 

and 

(12) h - S ( d - a ) / d  

For the two-dimensional simulations the effective value of the exponent 7 (equation 
( 6 ) )  has a value close to 0.5 for a 2 0.5. For smaller values of a the effective value of 
7 is larger than 0.5 but decreases slowly with increasing cluster size. It seems possible 
that the asymptotic value for r ]  is 0.5 for all values of a > 0. 

A similar set of three-dimensional simulations was carried out ( d  = 3, d, = 2) and 
the results are given in table 2. In this case a = 2  corresponds to uniform deposition. 
The results given in this table are consistent with equation ( 1 1 )  (v, = l / d )  and (12) 
( vI1 = ( d  - a ) / d ) .  The effective value for the exponent r ]  remains quite close to l / d  
for a value of a 2 1.25 but for smaller values of a it increases with increasing a. 

Based on both the simple arguments given above and the simulation results, the 
exponents vll and vl are given by V I I  = ( d  - a ) / d  and vi = l/d. The dependence of 7 
on a is still ambiguous. The computer simulation results indicate that 7 increases 
continuously as a decreases and it seems reasonable that 7 should approach a value 
of 1 as a decreases. However, this behaviour may be a consequence of a crossover 
and there may be only two asymptotic values for 7. 

Table 2. Values obtained for the exponents Y I I ,  vl and 7. The statistical uncertainties are 
about *0.0001, *0.0002 and +0.001 for vIl , vl and 7) respectively. 

cy 

2 
1.5 
1.25 
1.0 
0.75 
0.5 
0.25 

S Vi1 7 

105 0.336 0.345 0.345 
lo6 0.490 0.338 0.33 1 
2.5 x lo6 0.574 0.337 0.363 
2.5 x lo6 0.661 0.332 0.430 
2.5 x lo6 0.745 0.339 0.509 
1 o5 0.833 0.352 0.606 
5 x lo6 0.901 0.340 0.705 
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